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Executive Summary 

Many military, and commercial, communication systems operate in environ- 
ments containing large non-Gaussian interference. This interference may be 
hostile, as in the case of intentional jamming, or friendly, such as co-channel 
interference. Robust locally optimum (LO) detection is one means by which 
interference exhibiting a large jammer-to-signal ratio (J/S) can be mitigated. 
The term robust, in this context, indicates that prior information regarding 
the channel statistics is not required. Instead, the required LO nonlinear- 
ity is implemented using an estimate of the channel noise probability density 
function (pdf). Thus, the robust LO detector can be used in applications 
where the channel interference is unknown and possibly nonstationary. 

The derivations of robust LO detection algorithms with and without 
memory, and their performance in a communications system, are the subject 
of this report. There are three forms of LO detection considered: (1) detec- 
tion with memory, (2) detection in independent and identically distributed 
(iid) noise, and (3) memoryless detection. A number of algorithms for imple- 
menting the various detector structures are presented, and include: (1) the 
univariate and multivariate histogram algorithms, (2) the M-interval poly- 
nomial approximation (MIPA), (3) the continuous polynomial approximation 
(CPA), (4) the Fourier series approximation (FSA), and (5) the univariate 
and multivariate kernel algorithms. In all of these methods, observed sam- 
ples of the channel noise are used to estimate the noise pdf, from which an 
estimate of the LO nonlinearity is constructed. However, in most applica- 
tions uncorrupted noise samples are unavailable since the noise is corrupted 
by the information signal. A common solution is to employ the large J/S 
assumption that the noise pdf is approximately equal to the received signal 
pdf However, simulation results show that this assumption is not always 
valid, even in high J/S environments. 



To determine the cause of the observed regions of poor performance, two 
"ideal" detector structures were examined: (1) the globally optimum (GO), 
and (2) the ideal LO (ILO) detectors. In both of these detector algorithms, 
uncorrupted noise samples, although unavailable in practice, were provided 
and used to estimate the required noise pdfs. The simulation results showed 
that both of these techniques provided "robust" performance over a wide 
range of jamming scenarios. It can be inferred, therefore, that robust LO 
detection techniques will be extremely useful in applications characterized 
by unknown, nonstationary interference, provided that it is possible to ac- 
curately estimate the noise pdf. As a result, techniques for either obtaining 
uncorrupted estimates of the noise samples, or for constructing an accurate 
estimate of the noise pdf from a preliminary estimate of the received sig- 
nal pdf, will be required in order to take full advantage of the "robustness" 
available in the robust LO detector. 



Chapter 1 

Introduction 

Many military, and commercial, communication systems operate in environ- 
ments containing large non-Gaussian interference. This interference may be 
hostile, as in the case of intentional jamming, or friendly, such as co-channel 
interference. In either case, a performance degradation will likely be ob- 
served, even in systems employing standard spread spectrum (SS) signaling 
techniques, since the linear receiver structure commonly used is optimum 
only in the case of Gaussian channel noise. 

One method for improving system performance which has received consid- 
erable attention, particularly for applications in high jammer-to-signal ratio 
(J/S) environments, is locally optimum (LO) detection [l]-[4]. In its original 
form, the LO detector utilizes a nonlinearity derived as an approximation to 
the optimum maximum likelihood (ML) detector. In many scenarios, the LO 
detector is simpler to implement than the corresponding ML detector, and 
its performance asymptotically approaches that of the ML detector as the 
signal becomes small relative to the interference. 

One drawback to the original form of the LO detector is that, similar to 
the ML detector, it requires a priori knowledge of the noise probability den- 
sity function (pdf) to implement the LO nonlinearity. In most applications 
of interest, however, the noise statistics are unknown, and possibly nonsta- 
tionary. Thus, recent efforts have focused on robust LO detection techniques 
[5]-[10], in which the required LO nonlinearity is constructed using estimates 
of the interference statistics, most notably the pdf and its derivative. Since 
the robust LO detector implementation is based on estimation techniques, 
it can adapt to the unknown noise, and modify its structure as the noise 



changes. 
The derivations of robust LO detection algorithms with and without 

memory, and their performance in a communications system, are the sub- 
ject of this report. The organization of the report is as follows. The deriva- 
tions of the various LO detector algorithms for quadrature signaling are pre- 
sented in Chapter 2, with an emphasis on direct sequence (DS) SS systems. 
Next, a number of memoryless robust LO detector methods are discussed 
in Chapter 3. These methods are based on histogram, polynomial, Fourier 
series, and kernel estimates of the noise magnitude pdf. Results are pre- 
sented which show the performance characteristics for the various detector 
algorithms when subjected to a single continuous wave (CW) jammer. Algo- 
rithms for implementing the robust LO detector with memory are the subject 
of Chapter 4, and are based on estimating the joint multivariate pdf of the 
channel noise. Results are also presented for detection in various CW jam- 
mer scenarios. While the robust LO detectors discussed in Chapters 3 and 4 
require estimates of the noise pdf, the large J/S assumption that the noise 
pdf is approximately equal to the received signal pdf is used in simulation, 
since uncorrupted noise observations are typically unavailable in a communi- 
cations system. The effects of this assumption are investigated in Chapter 5 
through the examination of two "ideal" detector algorithms. Finally, the 
overall conclusions of this research effort are detailed in Chapter 6 of this 
document. 

10 



Chapter 2 

Derivation of the Robust LO 
Detectors for Quadrature 
Signaling 

In quadrature signaling techniques, the information signal is transmitted over 
two orthogonal channels, namely the in-phase (I) and quadrature (Q) chan- 
nels. At baseband, these signals can be represented as a complex waveform 
given by [11] 

*n(*) = SU*) + JSQjt), m = l,...,M, (2.1) 

where s/m(i) and SQm(t) are T second duration signals transmitted on the 
I and Q channels, respectively. M denotes the number of different possible 
signal pairs. Sampling at a rate /, = 1/T, produces the vector sm, written 
as 

sm = sIm + jsQm (2.2) 

where sm, s/m, and SQm are vectors of length JV, and N = T/T3. As an 
example, consider baseband quadrature phased shift keyed (QPSK) signaling. 

11 



The possible transmitted signal pairs are 

l+jl 

I-Jl 

-l+jl 

l-i-ii 

,k = l,...,N (2.3) 

where E\, = |/0
T | sm(t) |2 dt is the energy in each signal period.   The 

corresponding QPSK signal constellation is shown in Fig. 2.1. 

X 

SQHIOO 

T 

X 

X 

simOO 

X 

Figure 2.1: QPSK signal constellation 

The derivation of the LO detectors for quadrature signaling is as follows: 
Let the received signal vector of length N be given by 

TI + JTQ = sIm + n/ + j(sQm + nQ) (2.4) 

where M is the number of possible transmitted signal pairs, and nj and IIQ 

are the I and Q noise vectors (jamming plus background interference).   If 

12 



the observed value of the received signal is pt + jpq, and the transmitted 
signal and noise are independent, then from [5] the maximum likelihood (ML) 
detector for this scenario is given by: 

Choose the transmitted signal pair, (s/m,SQm), which maximizes 
(2.5) 

ln[/n,nQ(pi - S/m, pq - SQm)] , 

where /n7n<2(^7/j VQ) 
1S the joint probability density function (pdf) of the noise. 

Approximating Eq. (2.5) using first-order Taylor series expansions yields the 
following result: 

M/n/n<3(p/-sim,PQ-sQm)]   «   HfmnQ(pi,PQ)] 

- £?=! [**.(*)g^5J M/WP„ PQ)} 

+ *9m(*)g4bfcjM/niIlg(P/,P(})]]   • 
(2.6) 

Since the term ln[/n/n,j(P/>PQ)] is constant for all m, the ML detector can 
be approximated by: 

Choose the transmitted signal pair, (sjm,SQm), which maximizes 

KP) = 
1
(PI,PQ)   =   -Efei [«^WS^M/IWPI.PQ)] 

+ sQ~We4w MW** PQ)}}       (2-7) 

where g/(p/,pQ) = \gh{p)...giN{p)}T , gq(pi,PQ) = [9QAP)---9QN{P)}
T, 

and 

f   \     • 9      ...        , ., d^{k) /n7nQ(Pj,PQ) 

The functions ^/fc(p) and 5/fc(p) of Eq. (2.8) and Eq. (2.9) are called the LO 
nonlinearities with memory, and Eq. (2.7) describes the LO detector with 
memory. 

13 



The LO detector of Eq. (2.7) can be greatly simplified if the noise samples 
are independent and identically distributed (iid). In this case, the joint pdf 
of the channel noise becomes 

N 

fnmQ(Vi,VQ) = II fninQ(vi(k),r]Q(k)). (2.10) 
jfc=i 

The LO nonlinearities of Eq. (2.8) and Eq. (2.9) then become 

9ik(p) = 9i(pi,PQ)   =   -/-MW*,*,)] = -&/ninfPl'P? 
°Pi UmQ{phpQ) 

(2.11) 

9Qk(p)=9Q(pI,PQ)     =     —^—Hfn1nQ(pI,PQ)] = -dpQ.   ^      h   ,9    , 
°PQ UmoipjypQ) 

(2.12) 

where pi = pj(k) and PQ = /><?(&). Thus, the 2JV-variate functions of 
Eq. (2.8) and Eq. (2.9) reduce to the functions of 2 variables given by 
Eq. (2.11) and Eq. (2.12). Finally, the LO detector of Eq. (2.7) becomes: 

Choose the transmitted signal pair, (s/m,s<3m), which maximizes 

«PI,PQ)    =     -TJUl'UQvfeWni^ipmpQik))} (2.13) 
+ sQ~(k)a£mHfntnMk),PQ(k)))} ■ 

Further simplification of the LO detector results if the channel noise sam- 
ples are iid and if the joint pdf has bivariate radial symmetry. Under this 
assumption, the joint noise pdf can be written as 

fninqi-nhVo) = < 
fn(v)/(2Trr,),   O<0n<27r 

(2.14) 
0, otherwise 

where fn(v) is the envelope pdf of the noise, n = Jn\ + Uq is the magnitude 
of the noise, and 9n = tan-1 (n<j/n/) is the phase of the noise. The radial 
symmetry assumption is valid for many interference sources of interest as they 
have random phase angles. Even a constant frequency waveform will have a 
vector that rotates at a uniform rate relative to the transmitted signal vector, 

14 



and is therefore equally likely at any angle [10]. Under this assumption, the 
LO detector of Eq. (2.13) becomes the memoryless LO detector, and is given 
by: 

Choose the transmitted signal pair, (s/m,SQm), which maximizes 

KPI,PQ)   =   Eti[^m(k)g(p(k))cos(Ör(k)) (2*15) 
+sQm(k)g(p(k))sin(9r(k))} 

where 

««*» * -ijrfwm+^ - -*&$■+^, (-a) 

p(k) = Jpj(k)+ pg(k) is the observed magnitude of the received signal, and 
0r(k) = tan-1(pQ(k)/pi(k)) is the observed phase. 

A discussion of the LO nonlinearity is necessary at this point. In deriving 
the approximation of the joint noise pdf in Eq. (2.6), an important assump- 
tion was made, namely the small signal assumption. Since only the first-order 
Taylor series was used to approximate ln[/njnQ(-)] *n Eq. (2.6), it is necessary 
that the higher order terms of the Taylor series decay to zero. These higher 
order terms all contain powers of sim(k) and SQm(k). If | sjm(jfe) |<C 1 and 
I sQm(k) |< 1, then [sIm(k)Y, [sQm(k)}*, and [sim(k)]^[sQm(k)]^ all approach 
zero, and the higher order terms of the Taylor series become negligible. 

The small signal assumption is also equivalent to the large jammer-to- 
signal ratio (J/S) assumption, i.e., that the noise is much larger than the 
information signal. To see this, assume that | n |>| s |, where n is the 
random noise variable and 5 is the information signal. Let n = n/A and 
s — s/A, where A > 0 is chosen such that | s |-C 1. If the pdf of n is fn{v) 
and the pdf of n is /n(^), then fa(rj) = Afn(An) [12]. Note that if 77 is the 
observation of n, then 77 is the observation of n, where fj = 77/A. The LO 
nonlinearity corresponding to fn(rj) is g(p) = -f'n{p)lJn{p) + l/p, where (') 
denotes differentiation. The LO nonlinearity corresponding to ffSj)) is g(p) = 
-&{?)/Mfi) + 1/P = TAf'n{Ap)IUAp) + l/p = Ag(p), where p = p/A. 
Since g(p), the LO nonlinearity corresponding to the large J/S assumption, 
and g(p), the LO nonlinearity corresponding to the small signal assumption, 
differ by only a constant, the resulting LO detector structures are equivalent. 

15 



Thus, the Taylor series approximation of Eq. (2.6) is also valid under the large 
J/S assumption commonly used in many military communications scenarios. 

Of particular interest in this report is the LO detection of QPSK signals 
in a direct sequence (DS) spread spectrum (SS) communications system. In 
the DSSS system shown in Fig. 2.2, the information signal in the ith interval, 
[ir,(*+l)-r), is given by 

d(t) = ct.COnC* - iT) = [dIm(i) + jdQm(i)]Tl(t - iT) (2.17) 

where U(t) is a unit pulse with a duration of T seconds, and dm(i) can be 
one of four (M = 4) possible quadrature signals: 

dlm(i) + jdQm(i) = < 
1-J'l 

-1-Jl 

(2.18) 

The information signals in the I and Q channels are then multiplied by 
psuedo-noise (PN) "chipping signals," c/(i) and cQ(t), respectively, as given 

by 

(2.19) E, 
^(iW^E^W-^) Tc 

where Ec = |/0
Te | C^+JCQH) |2 dt and c/(fc) = ±1 and cQ(k) = ±1 each 

with probability 1/2. The resulting transmitted signal during the ith interval 
in the QPSK DSSS system is x 

IK N 
s(t) = Sl(t)+jSQ(t) = J=z E [dIm{i)Cl(k) + jdQm(i)CQ(k)} n(* - kTc). 

(2.20) 
The value of N, the length of the signal vectors, is given by N = T/Tc and 
is the number of chips per information symbol. 

1Note that dm(i) is constant in the interval [iT, (i + 1) • T). 

16 



Transmitter 

~ü»\/ 
s(t) 

c(t) 

Channel 

n(t) 

■& 

Fteceiver 

~V"^jO~H g(r) 
to 
decision 

o(k) 

Figure 2.2: A QPSK DSSS communications system with LO detection 

As shown in Fig. 2.2, the sampled version of the received signal, r/(fc) + 
jrQ(k), in the interval [iT, (i + l)T) is formed by sampling the received signal 
at Tc seconds 2, yielding the following expression 

ri(k) + jrQ(k) = W— dIm{i)ci{k) + n^k) + j 

(2.21) 
where ni(k) + jnq(k) is the (complex) sampled version of the channel noise. 
Let the observed value of the received signal be PJ + JPQ- By analogy to the 
derivations of the LO detectors at the beginning of this chapter, and removing 
any constant multipliers, the resulting LO detectors for the QPSK DSSS sys- 
tem are: 

Choose the transmitted signal pair, {d>im(i),dQm(i)), which maximizes 

N 

KPUPQ)  =  -£ 
fc=i 

dim(i)ci(k) 
dpi(k) ln[/n,n„ (PJ.PQ)] 

+ dQm(i)cQ(k)d HfnmQ(Pi, PQ)\ (2.22) 

2One can also sample at higher rates. Here, sampling at the chip rate was chosen so as 
to simplify the notation. The simulation results in subsequent chapters, however, utilize 
multiple samples per chip. 
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N 

KPI,PQ)   =   ~ E 

LO detector with memory 

^)ci{k)lkk) HfninQipl{k)'Pq{k))] 
k=\ 

+ dQm{i)cQ(k)^-7n\n[fninQ(pI(k),pQ(k))] (2.23) 
dpQ{k) 

LO detector for iid noise 

KPI,PQ)   =   E{dim(i)ci(k)g[p(k)]cos[0T(k)} 
jfe=i 

+dQm(i)cQ{k)g[p(k)] sm[Ör(k)]} (2.24) 

memoryless LO detector 

The LO detectors described in Eq. (2.22) to Eq. (2.24) all require knowl- 
edge of the noise pdf. However, in most cases of interest this knowledge is 
either unavailable, or the interference is nonstationary. In these cases, the 
LO nonlinearities must be estimated, either by estimating the noise pdf, or 
by estimating the nonlinearity directly. This approach of robust LO detection 
is the subject of the remainder of this report. 
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Chapter 3 

Memoryless LO Detector 
Implementation Techniques 

The preceding chapter presented the derivations of a number of LO detectors. 
The type of LO detector chosen for a particular application is primarily 
a consequence of the assumptions made concerning the noise samples. If 
the noise samples are iid, and their pdf exhibits radial symmetry, then a 
memoryless LO detector, such as that of Eq. (2.15) and Eq. (2.24) may be 
used. Once a good model of the noise is obtained, or at least some initial 
assumptions are determined, the next step is to implement the corresponding 
LO detector. 

In the military environment, since most intentional jamming techniques 
have an unknown nature, an accurate model of the noise pdf is usually not 
known a ■priori. In these scenarios, the noise pdf must be estimated from the 
available data samples. This estimate is then used to implement an approxi- 
mate LO nonlinearity. If the uncorrupted noise samples are unavailable (as is 
the usual case in a communications system) and the small-signal assumption 
is valid, the received signal samples may be used in many cases to give a 
crude approximation of the noise pdf. Thus, various univariate pdf estima- 
tion techniques and their use in implementing the LO detector are discussed 
in the remainder of this section. 
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3.1    Review of the Histogram Algorithm 

Using the histogram as a means of implementing the memoryless LO non- 
linearity has been extensively studied in [5] and [6]. Recall that the one- 
dimensional memoryless LO nonlinearity of Eq. (2.16) can be written as 

s(*)=--^m[/„(*)] + 7- (3.1) 
dpi pi 

To approximate g(pi) using the histogram algorithm, the first step is to 
approximate fn(pi)- Let {77»} be the set of Q observed noise magnitude 
samples, and divide the range of {^} into K intervals or "bins", Bk, where 

Bk = {rn:    bk < rji < bk+1,    k = 0,... ,K - 1} . (3.2) 

The values {bk}, with bo = xmm and &#■ = xmax , are called the "breakpoints" 
of the histogram and are determined heuristically. For example, the break- 
points may be chosen so that the bins have equal width, or so that each bin 
contains the same number of observed samples. Next, the probability of a 
sample being in each bin, P{Bk}, is approximated by its relative frequency 

HBk} = ^ E IBM (3-3) 

where IA(V) is the set indicator function, i.e., IA(V) = 1 for y € A and 
0 otherwise. Then, the histogram estimate of fn(pi), denoted as fn(pi), is 
given by 

to'ErrW (3-4) 
k=Q  Ofc+l  - ok 

Next, the derivative of ln[fn(pi)] must be computed. If it is assumed that 
the actual pdf fn(pi) is continuous, then the impulses that arise from dif- 
ferentiating Eq. (3.4) do not accurately model ^rln[/„(^t)]. To remedy this 
dilemma another way of viewing the histogram is utilized. One can think 
of the process of assigning samples to a bin as a form of quantization. In 
other words, all pi in the range (bk < pi < &jt+i) are quantized to bk. Then 
a numerical approximation of the derivative of ln[/n(pj)] evaluated at bk is 
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used, i.e., 

£:Hfn(pi)]\Pi=bk 

(3.5) 

M/«(6*+i)] -ln[/n(6fc_i)] 
H+i -6*-i 

HP(Bk+1)} -ln[£(B*-i)] 
bk+i -6fc-i 

ln[bjk+2 - b*+i]-M&* -fefc-i] 
b k+i — 6fc_i 

Note, if the bins have equal width then the right side of Eq. (3.5) reduces to 
M*{Bfc+i)la-M*{fl»-i)] wnere A is the width of a bin pimply, the value of the 

approximation is extended from bk to all pi in the range (6* < # < &jt+i)j 
yielding the histogram implementation of the memoryless LO nonlinearity: 

^..l^n-^Mj^^     (36) 

Histogram estimation of pdfs usually require a large number of samples 
([14], Ch. 3). Thus Q, the total number of observed samples used to construct 
the histogram, may be much larger than N, the number of samples in each 
signal vector. To obtain the total number of required observed samples, the 
value of Q should be chosen such that Q = CN, where C is an integer chosen 
to yield enough samples to construct and accurate histogram. The C vectors 
can be stored and all the available samples used to compute the histogram. 
Detection can then be performed on each data vector using the resulting 
histogram to compute the approximate nonlinearity of Eq. (3.6). 

3.2    Review of the MIPA Algorithm 

The M-interval polynomial approximation (MIPA) is a polynomial-based 
method for estimating the noise magnitude pdf, fn(v) [5] [9]. In this al- 
gorithm the domain of the PDF estimate is divided into M intervals, one 
for each approximating polynomial.1 More formally, let {77^ be the set of 
Q observed samples of the noise magnitude random variable, n, and as in 
the histogram method, divide the range of {77;} into M intervals, or "bins," 

xNote that in this context, M, the number of intervals, is not necessarily the same as 
the number of different possible transmitted signal pairs. 

21 



Bk defined by the bin breakpoints {&*} as in Eq. (3.2), where in this case 
M = K. The MIPA estimate, fn(v), of the noise pdf can be written as 

M-l 

tiv) = E toWofo) (3-7) 
»=o 

where 
A 

/;(*7) = a-io + ati-q + • ■ ■ + aipTf (3.8) 

is the approximating polynomial for the ith bin, p is the MIPA order, and 
Jx(y) is the set indicator function. The MIPA polynomial coefficients a„ are 
obtained by first constructing a polynomial approximation of the noise pdf 
conditioned on the event that the observation 77 lies in the ith bin. Recall 
that the conditional noise, fa(y), for the ith bin can be written as 

fM = U(v\bi<V< fc+i) =   p(h jr™ h    , (3.9) 
r{bi SV < °i+i) 

where P(bi < 77 < bi+i) is the probability that 77 is in the interval [6», 6i+1). 
Let the approximating polynomial, fain), for /^(T/) have the form 

f«tn) = cm + cu 77 + • • • + aprf. (3.10) 

The coefficients Cij are determined by minimizing the integrated squared error 
A 

(ISE) between fa{v) a^d /c(77), given by 

ISE   =    ti+l [Un) ~ L]2dr, (3.11) 

- r hi bi 
fci{v)-J2cijV3 

j=0 

2 

dr\. 

Taking the derivative of the ISE with respect to Cik, setting it equal to zero, 
and simplifying yields the following result: 

/      U-n)r}kdr,= 77* $>.,• 77^77,   * = 0,...,p. (3.12) 
Jbi Jbi j=Q 

The term on the left side of Eq. (3.12) is the kth moment of fa(v), i-e-> TOtfc 

[12]. Solving the integral on the right side of Eq. (3.12) and writing the result 
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in matrix form yields the solution for the MIPA coefficients of general order: 

771. 

771;. 
«o 

mip  . 

1 2 

»sa-**1 

p+i 

p+i 

2p+l 

Cil 

LCip 

(3.13) 

or: 
mi = Hi x a (3.14) 

where c = [CJO en ... Cip]T is the polynomial coefficient vector, mi is the 
vector of moments, and Hi is the matrix of intervals. From this formula Ci 
can be computed as 

Ci = Hr1 x mi. (3.15) 

A major drawback of the solution for c,- in Eq. (3.15) is that the inversion 
of Hi is computationally intensive and must be performed for each of the M 
intervals. However, a significant reduction in computation can be achieved 
by applying the linear transform 

77-&i 
a = 

k+i — h 
(3.16) 

to Eq. (3.12). This expression maps the interval [&j, 6*+i) to [0,1). If Xi is 
the random variable whose outcome is a, then the joint pdf of Xi, fXi(a), can 
be written as fXi(oi) = (&i+i — k)/c((&»+i — bi)a + bi). Thus, the system of 
equations in Eq. (3.12) becomes 

f1 fXi(<x)[(bi+1-bi)a+bi}kda = J2 f1 <*[(**i-is)a+fc]**«fa,   k = 0,... ,p. 
Jo i=0 Jo 

(3.17) 
Next, examine the following system of equations: 

T fXi(a)akda = £ /* d^e^da,   k = 0,... ,p. (3.18) 
3=0' 

The solution of Eq. (3.18) for d = [d,o du ... dip]T yields the MIPA estimate, 
fXi(a), for fXi(a), namely 

fxi(a) = dio + dna + ... + divoP (3.19) 
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where 
d; = H"1 x m;. (3.20) 

The vector riii contains the first p moments of Xi, and H is a constant matrix 
(for all i) that is given by 

H = 

l 
p+i 

l 
P+2 

1 1 
L p+1     p+2 2p+l 

(3.21) 

and needs to be inverted only once. Comparing Eq. (3.17) with Eq. (3.18), it 
can be shown that the coefficients Cij can be computed from a linear combina- 
tion of the coefficients dij []. If L, is the corresponding linear transformation 
matrix, then 

d = Li x di. (3.22) 

Thus, the coefficients aj = [al0 «to ... aip]T for the overall MIPA pdf estimate, 
fjjj), in Eq. (3.7) and Eq. (3.8) can be found as 

ai = Li x H 1 x riii • P(k < 77 < bi+i). (3.23) 

As a final observation, the actual values for the first p moments of X{ are 
usually unavailable. However, they can be estimated from the available data. 
Let {T}C} be the set of Qi observations of the noise random variable, n, that 
lie in the ith bin. If rhih is the kth moment of Xi, then 

Qi 

771, o = irX 
VCJ - bj 

Qi j=l \^+l — ^ij 

(3.24) 

can be used to estimate rhih. Defining m^ to be riii = [1771^ ... 77iiJ  , since 
7nio = 1, then the MIPA coefficients in Eq. (3.23) can be computed as 

ai = Li x H_1 x ihi • P(bi <7}< 6i+i) (3.25) 
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Once the MIPA coefficient vectors, a^, i = 0,..., M—1, are computed, the 
resulting MIPA estimate, g(p), of the memoryless LO nonlinearity is given 
by 

., » ^ tta + 2ai2p + ...+ jag?-1 + ... + pair?-1 T . .      1 

l=0 
atO + Oil/> + • • • + O-ipP9 p 

(3.26) 

3.3    The CPA Algorithm 

The CPA method of estimating a univariate pdf has been documented in 
[7] and [8]. This method, like the MIPA algorithm, utilizes a concatena- 
tion of polynomials to construct the overall pdf estimate. However, the 
CPA algorithm also provides an estimate that is continuous and that poss- 
eses continuous derivatives, with the degree of continuity determined by the 
approximation order. Four types of CPA algorithms are discussed in this sec- 
tion: the basic CPA, the CPA with linear transform (CPALT), the CPA with 
Gaussian tails (CPAGT), and the CPA with auxiliary function (CPAUX). 

In the basic CPA algorithm, an estimate of the cumulative distribution 
function (cdf) corresponding to the desired pdf is formed. This estimate 
is constructed in such a manner so as to have continuous first and second 
derivatives at all bin breakpoints. The result is a pdf estimate which has a 
continuous first derivative, a property that is desirable when implementing 
the memoryless LO nonlinearity. Formally, given {^} as the set of Q ob- 
servations of the noise magnitude random variable, divide the range of {^} 
into K bins, Bk, with breakpoints, {&*}, defined as in Eq. (3.2). Next, a 
histogram estimate of the noise cdf is constructed, where the resulting his- 
togram values at the breakpoints b0,. ■ ■, fejr are YQ,..., YR, with Y0 = 0 and 
YK = 1. Then, the basic CPA estimate, FN(T)), of the noise cdf, Fn(r}), is 
given by 

FM =EwO?)Wi)fo) (3-27) 

where 
Vi(v) = «io + ant] + ■•• + aipif (3.28) 

and p is the order of the approximation. The value of p is determined by 
the number of continuity constraints required in the algorithm. For the basic 
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CPA algorithm with continuous first and second derivatives, p = 5, and is 
determined by using the constraints that Fn(ri) must be continuous and have 
continuous first and second derivatives at all of the breakpoints [7]. The 
coefficients a,ij, i = 0,1,..., K — 1 and j = 0,1,..., p, for p = 5 are given by 

[7] 

(3.29) 

where Yi is the value of the histogram cdf at the ith breakpoint, Y{ is the 
approximate derivative of the histogram cdf at the ith breakpoint, and Y" is 
the approximate second derivative at the ith breakpoint. The values for Y± 
and Y" are computed using the following 3-point derivatives: 

1 
1 b] bf bt 
0 
0 

1 
1 

2bi+x 

2k 
3&i 

36? 46? 
56Jn 
5*? 

0 0 2 66j+i 126?+1 206f+] 

0 0 2 6k 126? 206? 

OiO \ Yi+1  1 
Oil Yi 
Oi2 Y' 
Oi3 1? 
Oi4 y»i 

. aiS . L Yl> J 

17 = 
6i_i »i+i 

and 
Y!    - Y-' yll __   Jt+1 Ji-1 

(3.30) 

(3.31) 
bi+i — 6i_i 

Note that in Eq. (3.30) and Eq. (3.31), the expressions for Y£, Y£, Yg and 
Yg require knowledge of 6_2, 6_i, 6JC+I, 6K-+2, V-2, l^-i, IJC+I, and YK+2- 

The choice of these additional values may have a significant impact on the 
resulting CPA estimate [7]. Alternatively, 2-point derivatives may be used 
at the endpoints to eliminate the need to choose additional endpoint values. 
In any event, once the coefficients {a»,-} are computed, the resulting CPA 
estimate of the memoryless LO nonlinearity is 

M -E 2ai2 + 6ai3p + 12ai4p2 + 20ai5p
3 . .     1     .      . 

TWOW + T'   (3-32; 
~ an + 2ai2p + 3ai3p

2 + ia^p3 + 5ai5/>4 

The CPALT algorithm is similar to the basic CPA method except that 
a linear transformation is performed on each bin of the histogram cdf. The 
strength of the linear transformation is that it greatly reduces the complexity 

26 



of the equations used to compute the CPA coefficients. In particular, the 
linear transformation is given by the pair of equations [7]: rji = V ~ K and 
Abi = h+i — k. This transformation shifts each interval to the origin. The 
resulting CPALT estimate of the noise cdf is 

K-l 

Fn(v) = Yl yi(rji)I[o,Abi)(Vi),   rji = V-bi 
i=0 

where the polynomial curve for each interval is 

Vi (rji) = OHO + anfji + Oi2fJi + ■ ■ ■ + ciis fjf 

(3.33) 

(3.34) 

and {ocij} are the transformed polynomial coefficients. The resulting trans- 
formed coefficients for p = 5 are computed via 

1 Abi Ab2i Abf Ab* Abi 
1 0 0 0 0 0 
0 1 2Ak 3A6? 4A6? 5Ab? 
0 1 0 0 0 0 
0 0 2 6A6t- 12A6? 20A6? 
0 0 2 0 0 0 

" OLio ' r ^f 11 
Oil Yi 
Oi2 YUi 
OÜ3 Y; 
an % 

.  «t'S  . I Yf \ 

(3.35) 

By inspection, an = Yi, an = Y/, and Oi2 = Y/'/2. Thus, Eq. (3.35) can 
be reduced to a system of three equations in three unknowns, resulting in 
a decrease in implementation complexity. Once the coefficients {oij} are 
computed, the CPALT estimate of the memoryless LO nonlinearity is given 
by 

M 
K-l 

-E 2oi2 + Qoi3pi + \2anp] + 20aisp- 

^0ai1 + 2oi2ßi + 30,3/5? + 4a«j5? + Sa^0'^^ + " ' (3-36) 
1 

P 

where pi = p — 6j. 
The CPALT algorithm may be further simplified by invoking the fol- 

lowing argument. Recall that a function with discontinuities will also have 
discontinuous derivatives. Such a function is usually an unacceptable esti- 
mate for most continuous pdfs of interest. However, the CPALT algorithm 
(as well as the other CPA algorithms) utilizes the 3-point derivatives given 
by Eq. (3.30) and Eq. (3.31) to compute the estimated deriavtives at the 
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breakpoints. Thus, an auxiliary function can be used in place of the initial 
cdf estimate, Fn(rj), and it need not be continuous at the breakpoints. How- 
ever, the auxiliary function must satisfy the constraint that its component 
first and second derivatives be equal at the breakpoints. The result is the 
CPA with auxiliary function method of estimating the noise pdf and cor- 
responding LO nonlinearity. Formally, let H(TJ) be the auxiliary function, 
where 

K-l 

R(v) = E yi(Vi)I[°Abi)(Vi),    Vi = V-t>i (3.37) 
t=0 

and 
ViiVi) = ßaVi + ßm\ + ßaVi + ß*V* • (3-38) 

The approximation order is p = 4 and is determined by the constraints on 
H(TJ), namely 

y'i[fii)\m=Abi    =   2/t'+ifö)k=A6,-   =     Yi 

y~i(vi)\m=o   =   y'i-i(vi)k=o   =   Y>_x 

yi'(vi)k=Abi = yUvi)k=Abi =   Y? 

Sf(fc)l*«o     =     VUVi)k=0     =    l^i- 

The coefficients {ßij}, i = 0,..., K - 1 and j = 1,..., 4, are given by 

(3.39) 

1    2A6; 3Afct 4A6i ß« Yi 

1     0 0 0 ßi2 YU 

0      2 6A6; !2Abi ß* V? 

0      2 0 0 ßi4 Y;U 

(3.40) 
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or, 

"Äl" 

fta 
= 

A3 

.A4. 

Y! *i-i 

Y." zi-l 
2 

2A6? 

At,i(Y/'+iyi1)-2(y/-^1) 
4Ä6? 

(3.41) 

The resulting CPA with auxiliary function estimate of the memoryless LO 
nonlinearity is 

„, ,        ^      2/3,2 + Qßxßi + 12/W?      T 1      . 

i=Q Pil + ^Pt2Pi + «Jpi3^t + ^4^ p 

(3.42) 
The CPAGT algorithm is particularly useful in environments where Gaus- 

sian noise is present. Since the noise observations that correspond to the tails 
of the pdf occur infrequently, it is difficult to estimate these regions nonpara- 
metrically. However, if a Gaussian-like tail structure is assumed, it is nec- 
essary to estimate only the mean and variance, since these two parameters 
completely characterize the Gaussian pdf. This approach is the foundation 
of the CPAGT algorithm. Beginning with a histogram approximation of the 
pdf (not the cdf as in the basic CPA and CPALT methods), the CPAGT 
estimate, fn(rj), of the noise pdf, fn(rj) 1S 

K-l 

/»fo) = E yi(v)I[bi,bi+i)(v) 
t=0 

where, in this case, p = 3 and 

Viiv) = «to + a-nV + <*i2V2 + ai3V3- 

The CPA coefficients a,-,-, % = 1,2,..., K - 2 and j = 0,1,. 
given by [7] 

1 &;+i «In &i 
1 bi b2 

% 
0 1 2bi+i 3^i 
0 1 2k 36? 

" aio " Yi+1 I 
Oil Yi 

&i2 YUi 
. Oi3  . I  Yf  J 

(3.43) 

(3.44) 

, p, for p = 3 are 

(3.45) 

29 



However, the first (b0 < 77 < &i) and last (6jc_i < rj < &*-) bins of the 
histogram pdf are approximated by the Gaussian pdf 

/,(,) = -4==e=^ (3.46) 
V27ra2 

where 
1   Q 

r^oEvk (3-47) 

and 

^ö^rEfo-A)8. (3-48) 

To achieve the required continuity at the breakpoints, the values of Yi} Y{, 
YK-I, and Y^^ are computed from fg(rj). The resulting CPAGT estimate 
of the memoryless LO nonlinearity is 

f - £f=i2 a:^;x^C^^M+i> * $ p < fc-i 
ftp) = £-£ &o < P < h or 

*2  ' &K-i <P<bK 

(3.49) 
Note that a linear transformation may be used in conjunction with this 
method to reduce the complexity of Eq. (3.45). 

3.4    The FSA Algorithm 

This section presents an algorithm for estimating pdfs that is based on the 
Fourier series ([13], Ch. 8). Its major features are that: (1) the approximation 
is continuous throughout its domain; (2) it possesses an arbitrary number of 
continuous derivatives; and (3) no quantization process is required, i.e., each 
data sample contributes uniquely to the overall estimate. 

Given the set of Q observed noise magnitude samples {77,} with mini- 
mum value rjmin and maximum value 7]max, the Fourier series approximation 
(FSA) of the noise magnitude pdf, denoted fn{y), is given by the following 
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expression: 

Mv) = 
*%■ + E W cos(A;a;o?7) + h sin(A:a;o77)} 

for ^min  <  7]  < 77m« 

0 otherwise . 

(3.50) 

The natural frequency of the FSA is given by o;0 = 2 7r / T where T = 
Vmax - Vmin is the "period." The coefficients {ak} and {bk} are determined 
by minimizing the ISE between fn{-q) and fn(rj), the actual noise magnitude 
pdf. This expression is written as 

!SE = %™ Mv) - MvWdv 

=   £™ [/•(*) -f~Eak cos(*u,077) (3.51) 

- "£, bk sinfkwoT)) 
k=i 

<h). 

Differentiating Eq. (3.51) with respect to a0, ak, and bk, equating each 
expression to zero, and noting that the integration of the sine or cosine 
functions over an integer multiple of its period is equal to zero and that 
SZ""Mv)dv = l,2 yields the following results: 

0,0 = 
*7max - 77, 

Vmmx 

ak — 

and 

?7 max      17min 

 2_ 

Im«      77min 

J   COs(ku0T))fn(T))d7),  fc = l,...,p, 

(3.52) 

(3.53) 

Vmtx 

-   I sm(kaj0T])fn(ri)dT], k = l,...,p. (3.54) 
*7xmn 

2It is assumed that the support length of the actual pdf /„(rj) is rimax - ruin • However, 
this is not a necessary constraint, since truncation can be used to approximate a pdf with 
infinite support. 
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Recalling that the expectation of a function h(X) of the random variable X 
is given by E{h(X)} = fx h(x)fx(x)dx, Eq. (3.53) and Eq. (3.54) can be 
written as 

o-k   = *7m*x —V mm 
E{cos(u}0kn)}, k = l,...,p 

(3.55) 
b"   =   ^-^^5ill^h)},t = l,...,p. 

Since the actual pdf of n is unavailable in many applications, Eq. (3.55) 
can be approximated using the sample averages, resulting in the estimated 
FSA coefficients: 

d0   =   a0 =   (3.56) 
Vraax        Vroia 

2 1   Q 

o-k   = 

2 1   * 

]T) cos(feo;o77i), k = l,...,p 

lk   =    _ J2 sm(ku0r)i),        k = l,...,p. 

Another method of approximating the FSA coefficients is discussed in [5] and 
involves first estimating fn{rj) via a histogram and then using the result in 
Eq. (3.53) and Eq. (3.54). If the value of the histogram at the ith breakpoint, 
bi, is Yi, and K is the number of histogram bins, then the FSA coefficients 
can be estimated by 

a0   =   a0 =  (3-57) 
Vioax        ^mi mm 

O-k    = 
2 K-1 

7?max        ?7min    t=0 

2 K~x 

X) Yi(bi+i - h)cos(fco;oh),       k = l,...,p 

%k   -      J2 Yi(bi+1 -bi)sm(ku}0bi),        k = l,...,p. 

To implement the memoryless LO nonUnearity, Eq. (3.50) and 
Eq. (3.56) are used directly in the expression for g(pi) given in 
Eq. (2.16). The resulting estimate of g(pi) is 

E o-kkojQ s\u{ku}Qpi) - E bkkw0 cos(ku0pi)      1 

9(Pi) = k^—P 
k-^irz + ~ (3-58) 

^ + E akcos{ku}0pi) + E h sm(ku)0pi)       Px 
2
     Jt=i fc=i 
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for 77mjn < pi < T]max and 0 otherwise. 
The major features of the FSA algorithm can be seen from 

Eq. (3.50) and Eq. (3.56). First, since the FSA estimate of a pdf is a sum 
of continuous functions the overall result is a continuous function. Second, 
since the sine and cosine functions are infinitely differentiable, the result- 
ing pdf estimate is also. Finally, each data sample contributes uniquely (no 
quantization) to the FSA estimate through Eq. (3.56). 

3.5    The Kernel Algorithm 

Kernel pdf estimators have received considerable interest in the past few 
decades ([14], Ch. 6 and references). Like the histogram, the kernel estima- 
tor is a nonparametric method, i.e., it does not assume that the pdf being 
estimated has a particular form. Instead, the resulting shape of the pdf esti- 
mate is solely a function of the observed data samples. The kernel estimator 
also has a number of advantages over the histogram: (1) it is continuous, 
(2) it may possess continuous derivatives, (3) it requires, on average, less 
samples to form an estimate than does the histogram, and (4) it is readily 
applicable to the estimation of multivariate pdfs and their gradients. Its 
major disadvantage is that in many cases the kernel estimator requires con- 
siderably more computation than does the histogram. However, with the 
availability of specialized processors, this increased computational burden is 
probably not an issue. 

Since the subject of kernel estimation is such a rich area, the remainder 
of this section provides a brief overview of the topic. In particular, the 
kernel estimators for univariate and multivariate pdfs will be presented, with 
emphasis placed on their application to LO detection. 

Let {rji} be the set of Q observed samples of the noise magnitude random 
variable n. The kernel estimator of fn(rj), the pdf of n, may be written as 

The kernel window, K(t), determines the weighting effect that the samples 
{r}i} have on the pdf estimate at the value 77. The variable h is known as the 
"smoothing parameter" and determines the range of samples {77,} that will 
affect the pdf estimate at the value 77. 
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Recall that the memoryless LO nonlinearity requires the first derivative 
of fn{v)- Using the kernel estimator, this can be approximated as 

PM = Tn JES'^)!-^'^)-^ 
As can be seen, the kernel estimator can provide a direct approximation of 
fn'(v)j which relieves the need to use numerical differentiation (as in the 
histogram method). 

The characteristics of the kernel pdf estimator of Eq. (3.59) are primarily 
determined by the kernel and the smoothing parameter. Kernels usually 
satisfy the following constraints: 

K{t)   >   0 
JK(t)dt   =   1 (3.61) 

JtK(t)dt   =   0. 

Two kernels which are widely used are (1) the Epanechnikov kernel, given 

by 3 
tf(i)=j(l-<2) /(.„,(«), (3.62) 

and (2) the Gaussian kernel, given by 

tf(t) = 4=e"t2/2- <3-63) V27T 

The Epanechnikov kernel is particularly usefuUince it minimizes the asymp- 
totic mean ISE (AMISE) between /„(i;) and /n(i/). Recalling the definition 
of ISE, e.g, Eq. (3.11) or Eq. (3.51), the mean ISE (MISE) is given by 

MISE [fn(v)] = E {ISE [tiv)]} , (3-64) 

and the AMISE is defined to be the main terms of the Taylor series approx- 
imation of the MISE ([14], Ch. 2). The Gaussian kernel, on the other hand, 
is particularly useful in situations when higher-order derivatives of fn(n) are 
required.3 

3For an extensive list of kernel functions see reference [14], Chapter 6. 
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The smoothing parameter h also affects the AMISE of fn(r)). A useful 
result shown in ([14], Ch. 6) is that for Gaussian data {77J and a Gaussian 
kernel, the value of h which minimizes the AMISE is 

h = (3)     aQ~^ (3.65) 

where a2 is the variance of n. Equation (3.65) can be a useful starting point 
for determining a value of h suitable for the given application. In most cases, 
the value of h will need to be decreased as the data becomes "less Gaussian." 

The simplest way to apply the univariate kernel estimator to LO detec- 
tion is by direct substitution into the memory less LO nonlinearity, g(pi), of 
Eq. (2.16). Thus, the kernel estimate of g(pi) is 

«*)« *M+I= '4^M+i.   (,66) 
fn(pi)     Pi h Q. K fei-Jh\      Pi 

More sophisticated forms oig{pi) can be derived if characteristics concerning 
the noise magnitude pdf are known prior to detector implementation. 

3.6     Simulation Results and Comparison of 
Techniques 

This section presents the simulation results for the memoryless LO detec- 
tor implementations discussed in Sections 3.1 through 3.5. Results are pre- 
sented for LO detection in both a standard QPSK system, Eq. (2.15) and 
Eq. (2.16), and a QPSK DSSS system, Eq. (2.24). In implementing the LO 
nonlinearities, the following critical assumption is made: since the environ- 
ments of interest exhibit high jammer-to-signal (J/S) ratios, the received 
signal magnitude, r, is approximately equal to the noise magnitude, n, and 
thus /,.(•) w /„(•)• In other words, the received magnitude pdf was used in 
place of the noise magnitude pdf in the implementation of the memoryless 
LO nonlinearities. Since the histogram, MIPA, and histogram FSA methods 
were examined in [5], the focus of this section is primarily on the various CPA 
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algorithms and the FSA method described by Eq. (3.56). Also, analysis of 
the kernel algorithm is postponed until Section 4.3. 

The first scenario examined was the probability of bit error (Pb) perfor- 
mance of the various LO nonlinearity implementation algorithms in a stan- 
dard QPSK system subjected to a single continuous wave (CW) jammer. The 
goal of analyzing these algorithms in a QPSK system is to determine parame- 
ter settings to be used in the QPSK DSSS system. Figure 3.1 through Fig. 3.3 
illustrates Pb for the CPALT, CPA with auxiliary function, and CPAGT 
methods for various values of fj/Rs, the ratio of the jammer's frequency to 
the information signal's symbol rate, and N, the number of samples per sym- 
bol, i.e., the length of the signal vectors.4 The value of J/S was fixed at 30 
dB and the system parameters are shown in Table 3.1. As can be seen from 
the graphs, all three methods exhibit the same performance characteristics: 
(1) Pb decreases as fj/R, increases, and (2) for a given fj/Rs, Pb remains 
relatively constant once N is sufficiently large, approximately N > 20. 

System Parameters for the QPSK System 
Parameter Name Parameter Value 

Transmitter 
and 
Receiver 
Parameters 

Sampling frequency (in Hz) 1 
Samples per symbol (N) 5 to 50 by 5 
Number of CPA bins (K) 10 

Number of samples per CPA (Q) 50,400 

Channel 
Parameters 

J/S (in dB) 30 

fj/Rs 0.00496 to 0.496 
by 0.098208 

Eb/N0 (in dB) 10 
Symbols used for Pb calculation 1,008 

Table 3.1: System parameters for the CPA algorithms in a QPSK system: 
examination of Pb relative to N and fj/R,. 

Next, the effects of K, the number of bins, and Q, the number of available 
samples used in the approximation (i.e., the number of received magnitude 
samples), on Pb was examined for the system parameters in Table 3.2 and 

4The results shown in the these figures were compiled from only a single simulation run. 
Thus, these graphs should be used for the purpose of determining performance trends, and 
not quantitative values of Pj. 
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fj/Rs 
0.5    so 

Samples per Symbol 

Figure 3.1: Probability of bit error (1 CW jammer at J/5=30 dB) for the 
LO QPSK simulation - CPA with linear transform implementation 

fj/Rs 
0.5     so 

Samples per Symbol 

Figure 3.2: Probability of bit error (1 CW jammer at 7/5=30 dB) for the 
LO QPSK simulation - CPA with auxiliary function implementation 
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Figure 3.3: Probability of bit error (1 CW jammer at J/5=30 dB) for the 
LO QPSK simulation - CPA with Gaussian tails implementation 

J/S = SOdB, with fj/Ra = 0.496.5 The Pb plot for the CPALT algorithm, 
Fig. 3.4, indicates that there is a steady decrease in Pb as both K and Q 
are increased. The CPA with auxiliary function, Fig. 3.5, also exhibits a 
decrease in Pb as K is increased, but is less sensitive to varying Q. Finally, 
the CPAGT algorithm, Fig. 3.6, has relatively uniform performance for all 
K and Q examined (provided Q is sufficiently large for the given K). 

Finally, the Pb performance of the various CPA algorithms was examined 
for various J/S and K values. The results corresponding to fj/Ra = 0.496 
and the system parameters in Table 3.3 are shown in Fig. 3.7 to Fig. 3.9.6 

The Pb plots indicate that all the methods have relatively low Pb in the 
region 20dB <J/S< 50dB, provided K is sufficiently large, and also in the 
region J/S « — lOdB. However, in the intermediate region of — lOdB < 
J/S < lOdB, Pb is relatively large.   While the reason for this increase in 

sThe results shown in the these figures were compiled from only a single simulation run. 
Thus, these graphs should be used for the purpose of determining performance trends, and 
not quantitative values of P&. 

6The results shown in the these figures were compiled from an average of three simu- 
lation runs. 
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System Parameters for the QPSK System 
Parameter Name Parameter Value 

Transmitter 
and 
Receiver 
Parameters 

Sampling frequency (in Hz) 1 
Samples per symbol (N) 25 
Number of CPA bins (K) 4 to 20 by 2 

Number of samples per CPA (Q) 5,000 to 
50,000 by 5,000 

Channel 
Parameters 

J/S (in dB) 30 
fi/Rs 0.496 

Eb/N0 (in dB) 10 
Symbols used for P\, calculation 10,000 

Table 3.2: System parameters for the CPA algorithms in a QPSK system: 
examination of Pf, relative to K and Q. 

Samples per Approx. 
5    20 

No. of Bins 

Figure 3.4: Probability of bit error (1 CW jammer at J/5=30 dB) for the 
LO QPSK simulation - CPA with linear transform implementation 
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5    20 
Samples per Appro* No. of Bins 

Figure 3.5: Probability of bit error (1 CW jammer at J/5=30 dB) for the 
LO QPSK simulation - CPA with auxiliary function implementation 

No. of Samples 
5    20 

No. of Bins 

Figure 3.6: Probability of bit error (1 CW jammer at J/5=30 dB) for the 
LO QPSK simulation - CPA with Gaussian tails implementation 
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Pb is not fully known, one possible explanation is that under the large J/S 
assumption that /,.(•)«/„(•), the LO nonlinearity attempts to mitigate the 
dominant component of the interference. For 20dB < J/S < 50dB, the CW 
jammer dominates, while for J/S « -lOdB the Gaussian background noise 
is dominant. In both these situations the LO nonlinearity is able to mitigate 
the dominant interference, and the effects of the other interferer are minimal. 
However, for -lOdB < J/S < lOdB, neither interferer is dominant, so the 
nonlinearity must attempt to mitigate both, with a resulting increase in Pb. 
A further investigation must be performed before the exact cause behind this 
Pb performance characteristic can be determined. 

System Parameters for the QPSK System 
Parameter Name Parameter Value 

Transmitter 
and 
Receiver 
Parameters 

Sampling frequency (in Hz) 1 
Samples per symbol (N) 25 
Number of CPA bins (K) 4 to 20 by 2 

Number of samples per CPA (Q) 5,000 
Channel 
Parameters 

J/S (in dB) -10 to 50 by 10 
filRs 0.496 

Eb/No (in dB) 10 
Symbols used for Pb calculation 1,000 

Table 3.3: System parameters for the CPA algorithms in a QPSK system: 
examination of Pb relative to J/S and K. 

The Pb performance of the FSA implementation of the memoryless LO 
nonlinearity in a QPSK system was also examined. For a single CW jammer 
with J/S = 30dB, the Pb relative to fj/R, and p, the FSA order, is shown 
in Fig. 3.10, with the the system parameters given in Table 3.4.7 As for 
the CPA algorithms, Pb decreases for the FSA algorithm as fj/Ra increases. 
Also, Pb was observed to be lowest in the region 5 < p < 20. 

With the information garnered in the analysis of the memoryless LO non- 
linearities in a QPSK system, a Pb performance analysis of the robust LO 
nonlinearities in a QPSK DSSS system was then performed. The following 
nonlinearity parameters were chosen as a result of the preceding analysis. 

7The results shown in the these figures were compiled from an average of three simu- 
lation runs. 
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No. of Bins 

J/S in dB 

Figure 3.7: Probability of bit error (1 CW jammer) for the LO QPSK simu- 
lation - CPA with linear transform implementation 

No. of Bins 

J/S in dB 

Figure 3.8: Probability of bit error (1 CW jammer) for the LO QPSK simu- 
lation - CPA with auxiliary function implementation 
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No. of Bins 

J/S in dB 

Figure 3.9: Probability of bit error (1 CW jammer) for the LO QPSK simu- 
lation - CPA with Gaussian tails implementation 

System Parameters for the QPSK System 
Parameter Name Parameter Value 

Transmitter 
and 
Receiver 
Parameters 

Symbol rate (Ra) in Hz 0.05 
Samples per symbol (N) 20 

FSA order (p) 2 to 20 by 2 
Number of samples per FSA (Q) 50,000 

Channel 
Parameters 

J/S (in dB) 30 
fi/Rs 0.00496 to 0.496 

by 0.098208 
Eb/N0 (in dB) 10 

Symbols used for P\, calculation 5,000 

Table 3.4:  System parameters for the FSA algorithm in a QPSK system: 
examination of P& relative to fj/R, and p. 
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FSA Order 

fl/Rs 

Figure 3.10: Probability of bit error (1 CW jammer) for the LO QPSK 
simulation - FSA implementation 

For the CPA algorithms: K = 10 and Q = 50,400. For the FSA algorithm: 
p = 10 and 20, and Q = 50,400. Using a processing gain = T/Tc of 20 
(see Chapter 2), and 2 samples per chip (resulting in N = 2 x 20 = 40), 
the performance was examined for the various robust LO nonlinearities in 
a QPSK DSSS system subjected to a single CW jammer with varying J/S 
and fj/R3, with the system parameters provided in Table 3.5.8 The sim- 
ulation results for the CPALT, CPA with auxiliary function, and CPAGT 
algorithms are shown in Fig. 3.11 to Fig. 3.13. Each method exhibited the 
same Pb characteristic: for sufficiently large J/S (J/S > lOdB) Pb decreases 
as fj/Ra increases. Also, the CPAGT algorithm consistently possessed a 
Pb lower than the other two CPA methods. The results for the FSA algo- 
rithm with p = 10&20 are shown in Fig. 3.14 and Fig. 3.15. This algorithm 
also exhibited the performance trend that Pb decreases as fj/R3 increases. 
Finally, similar simulation results for the histogram, histogram FSA, and 
second-order MIPA algorithms, provided from [5], are shown in Fig. 3.16 to 

8The results shown in the the following figures were compiled from an average of three 
simulation runs. 
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Fig. 3.18 for comparison purposes. 

System Parameters for the QPSK DSSS System 
Parameter Name Parameter Value 

Transmitter 
and 
Receiver 
Parameters 

Symbol Rate (R3) in Hz 0.1 
Chip rate (Ac) in Hz 2 

Samples per chip 2 
Samples per symbol (N) 40 
Number of CPA bins (K) 10 

FSA Order (p) 10 and 20 
Number of samples per 

CPA and FSA (Q) 
50,400 

Channel 
Parameters 

J/S (in dB) 0 to 50 by 10 

fi/R* 0.00496 to 0.496 
by 0.098208 

Eb/N0 (in dB) 10 
Symbols used for P& calculation 5,040 

Table 3.5: System parameters for the robust memory less LO nonlinearities 
in a QPSK DSSS system: examination of Pb relative to J/S and fj/Rs. 

From an examination of all the simulation results, a number of obser- 
vations can be made. First, while some LO nonlinearity implementation 
algorithms may exhibit slightly lower Pb than others, in general they all have 
roughly the same performance characteristics. Second, and probably more 
importantly, these robust techniques, which use the large J/S assumption 
that /,.(•) « /n(-)> ase no* as robust as would be desired. In particular, for 
the case of a single CW jammer, Pb varies greatly as fj/Ra changes, with low 
Pb in regions of high fj/R3, and high Pb in regions of low fj/Rs- Thus, the LO 
detector performs poorly when the frequency of the CW jammer lies near the 
center of the transmitted signal's frequency spectrum. The reason(s) behind 
this poor performance, and a discussion of possible ways to improve it, are 
the topics of Chapter 5. 
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0     0.5 Ij/Rs 

J/SindB 

Figure 3.11: Probability of bit error (1 CW jammer) for the LO DSSS sim- 
ulation - CPA with linear transform implementation 

0     0.5 Ij/Rs 

J/SindB 

Figure 3.12: Probability of bit error (1 CW jammer) for the LO DSSS sim- 
ulation - CPA with auxiliary function implementation 
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0.02- 

0.3 0, 
SO 

40 
30 

20 

J/SindB 

0    0.5 )j/Rs 

Figure 3.13: Probability of bit error (1 CW jammer) for the LO DSSS sim- 
ulation - CPA with Gaussian tails implementation 

fj/Rs 

Figure 3.14: Probability of bit error (1 CW jammer) for the LO DSSS sim- 
ulation - FSA implementation with p = 10 
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0.5     SO 

fj/Rs 

Figure 3.15: Probability of bit error (1 CW jammer) for the LO DSSS sim- 
ulation - FSA implementation with p = 20 

0     0.5 fjlHs 

J/SindB 

Figure 3.16: Probability of bit error (1 CW jammer) for the LO DSSS sim- 
ulation - histogram implementation 
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0     0.5 tyfls 

J/SindB 

Figure 3.17: Probability of bit error (1 CW jammer) for the LO DSSS sim- 
ulation - FSA/histogram implementation 

0    0.5 

J/S in dB 

Figure 3.18: Probability of bit error (1 CW jammer) for the LO DSSS sim- 
ulation - second-order MIPA implementation 

49 



3.7    The Direct FSA Implementation of the 
Memoryless LO Detector 

Given a few assumptions, a Fourier series may be used to directly estimate 
the memoryless LO nonlinearity. Ignoring the 1/p term, recall that the mem- 
oryless LO nonlinearity has the form g{p) = —fn'(p)/fn{p)- To derive the 
FSA estimate of g(p) the following assumptions are made concerning the 
noise pdf, fn(v): fn(v)1S even symmetric about the origin (and thus has zero 
mean), and is bounded by r)max and 7/mjn, where r)max = —^min-9 Begin the 
derivation by approximating g(p) as 

g(p) = 

( V P 
f + E a* cos(kv0p) + E 6jfc sin(ku;op) 

k=\ k=i 
for 77min < p < rjmilx (3.67) 

0 otherwise 

where T = 7/mai — 77mjn and w0 = (2TT) / T. The coefficients {a*} and {6*} 
{which are different from those in Eq. (3.50)) are chosen so as to minimize 
the mean squared error (MSE) when the observation consists of noise only, 
i.e., r = n. The MSE (denoted by the function J) is given by: 

J   =    E{[g(r) - g(r)}>} \r=n =   / [g(p) - g{p)f fn{p)dp 

T)m*x 

=    / 9{p) ~ *f -  £ a* cosikuop) -  E h sm(kuop) 
T)min    L fc=l k=l 

fn(p) dp . 

(3.68) 

To find a0 which minimizes J, the expression 8J/da0 is computed and 
*7m&x 

equated to zero. By symmetry,   /   sm(k<v0 p) fn{p) dp = 0 and fniVmin) 
Vrain. 

fn(Vmax), resulting in the following equation: 

P 

^ + £ akE[cos(ku>0n)] = /„(r;^) - /„(i/n-x) = 0. (3.69) 

9Note: These assumptions are valid as long as fn{v)1S bounded and is symmetric about 
its mean since a simple linear transformation may be used to shift the pdf to the origin. 
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Next, the expression dJ/dam is computed for m  ^   0 to find the coeffi- 
*7 max 

cients {ak} which minimize J. Noting that   /  fn'(p) cos(mu)op)dp = 0 and 

*)m*x 
/"sin(koj0p)cos(mujop)fn(p)dp = 0, the resulting system of equations is: 

*7min 

ao£[cos(ma;07i)] + £ ak {E[cos((k - m)w0n)} 

+ E[cos((k + m)cü0n)]} = 0,m = l,...,p. 

(3.70) 

Finally, J is minimized with respect to {bk} by computing dJ/dbk and equat- 
ing it to zero. Using the facts that fn{Vimn) = /n(»?nu«) and sin(mo;oT/min) = 
sin(rau>077max) = O)10 tne result is the following system of equations: 

\ £ bk{E[cos((k - m)u)0n)] - E[cos((k + m)u}0n)}} 

=   /n^minJsi^TnWo^nün)   -  fn(r]max) Sm(mU}0T)znax) 
+ 77xu;o£[cos(ma;on)] 

= mu;0.E[cos(mu;on)] 

for m = 1,... ,p. To simplify notation, define the vectors 

a   =   [ao    ai    •■•    aP]T 

b   =   [h    b2    ...    bp]T 

c   = 

E {cos(u;on)} 
2 E {cos(2w0n)} 

p E {cos(po;o")} 

10To See this, recall that W0 = 2*/{Vmax ~ Vmin) = ^/Vmax = -^/Vmin- 

(3.71) 

(3.72) 
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and the matrix 

1      FW^^U £{cos(u0n)} ...       £{cos[(P-l)ü,0n]} 
1-S{cos(2a;on)} _£ {COs(3a,0n)} -E {cos[(P + l)a,0n]} 

T= -S{cos(3J0n)} l-^^o^on)}     ■••       _K {cos[(P + 2)ll/on]} .      (3.73) 

S{cos[(P-l)u,on]} ... ... i_£{COs(2Pa;on)} 

Then, assuming T is invertible and that the set of equations described by 
Eq. (3.69) and Eq. (3.70) are linearly independent, the coefficients {ak} and 
{bk} which minimize J are found via the matrix equations 

a   =   0 
(3.74) 

b   =   2a;0T-1c. 

Thus the resulting FSA estimate of g(p) is given by (ignoring the 1/p term) 

p 

9{P) = 2 6* sin(fcwo^) (3-75) 

for 77min < P 5: ^max and 0 otherwise, where the set of coefficients {bk} is 
given by Eq. (3.74). 

The previous derivations for the FSA estimate of a pdf (Section 3.4) and 
of the memoryless LO nonlinearity used the assumption that the noise pdf, 
fn(v)> was bounded. However, there are many cases of interest in which the 
support of fn(rj) is unbounded, e.g., the Gaussian pdf [12], Ch. 2). In these 
instances the FSA algorithm may still be used with the following modifica- 
tions. The observed received signal in most applications will have a maximum 
and minimum value. If r)max is chosen as max(| /9max |, | Pmin I), then the 
FSA estimate with w0 = 7r/77max will encompass all values of the received 
signal. However, the actual range of the pdf, (-co, oo), can be used to com- 
pute the coefficients via Eq. (3.55) or Eq. (3.74). While the result will not 
be a true estimate of the actual unbounded noise pdf, in most cases it will 
provide a suitable approximation given the fact that the range of observed 
received signal values is bounded. 

The FSA algorithm can also be used for the case when the underlying 
pdf is unknown and knowledge of its domain (bounded or unbounded) is 
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unavailable. Provided that it is valid to assume that fn(v) 1S even-symmetric 
one can choose rjmax as max(| pmax \,\ pmjn |). The required coefficients 
can then be computed using Eq. (3.56) for the pdf estimate, or Eq. (3.74) 
(substituting a sample average for the expectation operation) for a direct 
estimate of the LO nonlinearity. 
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Chapter 4 

LO Detector with Memory 
Implementation Techniques 

The implementation of a robust memoryless LO detector was the subject of 
Chapter 3. In this chapter two of these techniques, the histogram and kernel 
algorithms, are extended to the multidimensional problem of implementing a 
robust LO detector with memory. As before, pdf estimation algorithms are 
utilized to provide the framework by which the required LO nonlinearities of 
Eq. (2.8) and Eq. (2.9) can be estimated. The result is a detector that can 
be used in an unknown, and possible changing, interference environment. 

As will be seen, the algorithms for implementing the LO nonlinearities 
with memory are more complicated than their memoryless counterparts. 
However, the algorithms with memory are potentially more powerful in that 
they utilize the interrelationship between data samples, whereas the mem- 
oryless algorithms process each sample independently. As a result, the LO 
detector with memory can be a prudent choice in environments character- 
ized by highly correlated interference samples, such as channels containing 
narrowband jammers or noise sources modeled as auto regressive (AR) pro- 
cesses. 

4.1    The Histogram Algorithm 

While a histogram can be used to estimate a multivariate pdf, it is not 
particularly suited to the task of implementing the LO nonlinearities with 
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memory. This section presents the multivariate histogram algorithm and the 
reasons why it is not suited to the task of implementing the LO detector with 
memory. 

Recall that the I and Q nonlinearities with memory of Eq. (2.8) and 
Eq. (2.9) are a function of fnznQ(Vi,VQ), the multivariate noise pdf. The 
histogram estimate of a multivariate pdf is a straightforward (but ardu- 
ous) extension of the histogram algorithm for estimating univariate pdfs, 
discussed in Section 3.1. Let {rjj.} = {[^(1) ... Vii(N)]T} and {rjQ.} = 
iblQiQ) • • • VQi(N)]T} each De a set °f L samples of the I and Q random 
noise vectors, nj and no, each having length JV. Define nT = [nf no] as the 

concatenated random noise vector, and {r}J} = {[77?,7o]} 
= {[%(!) ■■■Vii(N) VQ^)---VQi(N)]} = {[^(l) ...Vi(2N)]} as the set 
of L samples of n. Thus, fmnqiVi^Q) = fn(v) is a 2iV-dimensional pdf. 

Next, divide the domain of the jth dimension of fn(v) into K regions 
using the breakpoints bjk, where j = 1,...,2JV and k = Q,...,K. Thus, the 
entire 2JV-dimensional support of /n(»?) is divided into K2N "hyper-bins," 
Bkx jfc2Ar, defined as 

-Bjfei fc2JV = {Vi ■ hkj < ViU) < fyifci+i) for j = 1,..., 2JV 
(4.1) 

aad Ar,- = 0,..., ÜT — 1}. 

Note that the breakpoints {bjk} are chosen heuristically, e.g., such that each 
hyper-bin has the same width in each dimension, or each bin contains the 
same number of sample points. 

The probability of a sample of the concatenated noise vector lying in a 
given bin, P{Bku...,k3N}, is approximated by its relative frequency, 

P{Bkx *,„} « P{Bkl k2„} = ytk ^(Vi) (4.2) 

where IA{V) is the set indicator function. Finally, the multivariate histogram 
estimate of /n(»?)j denoted as fn(w), is given by 

til) = E •-   E  -fT1 P{B* ^}/sfcl *,»        (4.3) 
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where the normalizing scale factor, Cklt...,k2N, is 

2N 
Ch *2* = Ilte+i) _ bJkj] ■ (4.4) 

At this point, the practicality of the multivariate histogram estimator of 
Eq. (4.3) should be discussed. Suppose that, on average, it is desired to 
have P samples in each hyper-bin. Then, roughly P • K2N concatenated 
sample vectors, rj^ are required. The result is a required total number of 
individual noise samples, rn(j), approximately equal to 2NPK2N to yield 
approximately P sample points in each hyper-bin. For example, if K = 
10 bins per dimension, P = 10 samples per hyper-bin, and N = 2, i.e., 
fnmQ(ili,'nQ) = /n/(i)ni(2)n<J(i)n<J(2)('77(l)>*7J(2),VQ(1),VQC2)), then a total of 
approximately 400,000 individual noise samples are required. If N = 10, 
however, approximately 2 x 1022 individual noise samples are required. As can 
be seen, a linear increase in the length of the I and Q noise vectors results in 
an exponential increase in the number of individual noise data samples. Since 
in most situations it is not possible to obtain the required large number of 
data samples, the resulting multivariate histogram estimate will be poor. An 
example of a 2-dimensional histogram estimate corresponding to iid Gaussian 
I and Q noise data, for K = 6 and L = 10,000, is shown in Fig. 4.1. 

From the preceding discussion, it is evident that the multivariate his- 
togram estimate will provide an extremely crude noise pdf estimate at best. 
Even for the example pdf in Fig. 4.1, with P « 280 samples per hyper- 
bin, the resulting estimate is poor. In addition, the numerical differentiation 
techniques required to produce the approximate gradient of the histogram 
estimate will introduce further error. Thus, a multivariate pdf estimation 
technique more suited to the implementation of the LO nonlinearities with 
memory is presented in the next section. 

4.2    The Kernel Algorithm 

The multivariate kernel estimator of the noise pdf is developed as follows. De- 
fine the concatenated noise vector nT = [nJiiQ and let 
{T7J = {[77i(l)77i(2)...77i(2iV)]T}, i = 1,..., I, be a set of L samples of 
the random noise vector, n.   Since n has length 2N, the total number of 
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Figure 4.1:   Example of a multivariate histogram estimate of a pdf - iid 
Gaussian I and Q data with K = 6 and L = 10,000. 

available samples is Q = 2LN. The general multivariate kernel estimator is 
then defined as ([14], Ch. 6): 

Mv) = L IH 
1   E^H-1^-^))- (4.5) 

»=i 

The window K(t) is now a multivariate kernel and H is a linear transform 
matrix. 

At this point a special form of the general multivariate kernel estimator 
will be presented: the product kernel estimator. The product kernel estimate 
of/„(»/) is ([14], Ch. 6): 

fn(v) = /n(77(l), -., V(J), -, Vi™)) Lh, g'p^) 
(4.6) 

where r)(j) is the jth argument of fn(v) a^d rji(j) is the jth sample of the ith 

observed concatenated noise vector. The parameters {hj} are the smoothing 
parameters corresponding to each dimension of the kernel estimate. The 
kernel function K(t) is the same univariate kernel discussed in Section 3.5. 
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Recall that the LO detector with memory requires the partial derivatives 
of the multivariate noise pdf. The product kernel estimate of g4-r/n(77) is 

found by differentiating fn(rj) in Eq. (4.6). The result is 

Hi) 
/n(n)   = drjq Lh\"• h^ti 

i=l 

2JV 
(r)U)  - T)j(j) 

) 
(4.7) 

L hq hi • • • fe2.1v 
t=i 

21? 

K, fv(q) - Vi(q)\   TT KhU) - vtU)\ 

i = i 

Note that the expression in Eq. (4.7) can be extended to partial derivatives 
of arbitrary order. 

As in the case of the univariate kernel estimator, the product kernel es- 
timator has a useful expression yielding the set {hj} which minimizes the 
AMISE. If a Gaussian kernel is used and n is a multivariate Gaussian vec- 
tor with independent components, then the value of hj which minimizes the 
AMISE of fn(ri) is ([14], Ch. 6) 

/        A \ l/(2/V+4) 

**"  äSTI <"i~1/(M,+4' (48) 
,2N + 2, 

where a2j is the variance of the jth component of n. Equation (4.8) provides 
a starting point for determining {hj} that is most suitable for the given 
application. 

The product kernel estimate can be used to approximate the LO non- 
linearity with memory by substituting the kernel estimates of /n(*7) and 

elfäfnfa) (?=!.• • • >2N)int0 E(l- (2-8) ^ E<1- (2-9)> notinS that /"(»?) = 
/n/n<?('7/(l), • • •, Vi(N), VQ(1), ■■■, VQ{

N
))- The resulting product kernel es- 

timate of gq(p) = -3^j/n(p)//n(p) is: 

L 

9q{p) = —r 

2N 
J£l f fa) - Tli(q)\        T-r       J£ fp(j)-Vi(j)\ 

3 = 1 
i^9 

L 
E n K {*%$&) 

(4.9) 
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The techniques employed in arriving at Eq. (4.9) can be used to develop more 
sophisticated forms of the LO detector with memory. 

4.3     Simulation Results 

This section presents the simulation results for the product kernel implemen- 
tation of the robust LO detector with memory. Results are presented for LO 
detection, with and without memory, in a standard QPSK system. In this 
case, the LO detector without memory refers to the detector of Eq. (2.13), in 
which successive noise samples are independent, but simultaneous I and Q 
samples are correlated. In implementing the LO nonlinearities, the following 
critical assumption is made: since the environments of interest exhibit high 
jammer-to-signal (J/S) ratios, the received signal vector, YI + JTQ, is approx- 
imately equal to the noise vector, nj + JIIQ, and thus /rjrQ(

-) ~ /njnQ(-)- m 

other words, the received signal pdf was used in place of the noise pdf in the 
implementation of the LO nonlinearities. 

The first scenario examined was the LO detector without memory in a 
QPSK system subjected to a single CW jammer. The P& performance of 
the product kernel algorithm was determined relative to various values of 
J/S, fj/Ra, and B, the kernel resolution. The parameter B is related to the 
smoothing parameters, {hj}, by the following expression: 

hj 

where p,- and a,- . are the maximum and minimum observed values of 
the received signal in the jth dimension, respectively. The resulting P& plots 
are shown in Fig. 4.2 to Fig. 4.5, with the system parameters provided in 
Table 4.I.1 As can be seen, the results for the LO detector without memory 
(but with correlated I and Q samples) exhibits a similar P& characteristic as 
does the memoryless LO detector algorithms, whose results are provided in 
Section 3.6: P& decreases as fj/Rs increases. In addition, the kernel algorithm 
is also influenced by the value of B. For good performance in moderate J/S 
regions (lOdB < J/S < 20dB), B should be relatively small (10 < B < 20). 
However, for good performance in large J/S regions (20dB < J/S < 4=0dB), 

1The results shown in the these figures were compiled from an average of five simulation 
runs. 
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B should be large (20 < B < 40). This corresponds to the discussion in 
Section 3.6, namely that hj should be decreased as the noise environment 
becomes "less Gaussian." Thus, as J/S increases, the interference becomes 
"less Gaussian," and B oc 1/hj must be increased. 

System Parameters for the QPSK System 
Parameter Name Parameter Value 

Transmitter 
and 
Receiver 
Parameters 

Symbol rate (Rs) in Hz 0.05 
Samples per symbol (N) 20 

Memory length 1 
Kernel resolution (B) 10 to 40 by 10 

No. of samples per kernel approx. (Q) 1,000 

Channel 
Parameters 

J/S (in dB) 0 to 50 by 10 

filR* 0.00496 to 0.496 
by 0.098208 

Eb/N0 (in dB) 10 
Symbols used for Pb calculation 1,000 

Table 4.1: System parameters for the product kernel algorithm (without 
memory) in a QPSK system: examination of Pb relative to J/S, fj/Rs, and 
B. 

The next scenario examined was the LO detector with memory in a QPSK 
system subjected to a single CW jammer. Specifically, the value of N chosen 
for the kernel algorithm was N = 10 (see Eq. (4.9)). The plots of Pb relative 
to J/S, fj/Ra, and B are shown in Fig. 4.6 and Fig. 4.7, with the system 
parameters provided in Table 4.2.2 As before, Pb was observed to decrease as 
fj/Ra increased. Also, as J/S increased, an increase in B was also required 
to maintain a good value of Pb. However, the observed values of Pb for 
the LO detector with memory were typically larger than those for the LO 
detector without memory. The most probable reason for this phenomenon 
is the increase in error associated with approximating a pdf with a large 
dimensionality. The trade-off between memory length vs. approximation 
complexity will need to be addressed in future research. 

From the analyses made in this section, as well as those in Section 3.6, it 

2The results shown in the these figures were compiled from an average of five simulation 
runs. 
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0    0.5 

0/S in dB 

Figure 4.2: Probability of bit error (1 CW jammer) for the LO QPSK detector 
without memory simulation - B = 10 

0    0.5 Ij/Rs 

J/SindB 

Figure 4.3: Probability of bit error (1 CW jammer) for the LO QPSK detector 
without memory simulation - B = 20 
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0     0.5 fj/Rs 

J/SindB 

Figure 4.4: Probability of bit error (1 CW jammer) for the LO QPSK detector 
without memory simulation - B = 30 

0    0.5 fj/Rs 

J/SindB 

Figure 4.5: Probability of bit error (1 CW jammer) for the LO QPSK detector 
without memory simulation - B = 40 
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System Parameters for the QPSK System 
Parameter Name Parameter Value 

Transmitter 
and 
Receiver 
Parameters 

Symbol rate (Rs) in Hz 0.05 
Samples per symbol (N) 10 

Memory length 10 
Kernel resolution (B) 20 and 30 

No. of samples per kernel approx. (Q) 10,000 

Channel 
Parameters 

J/S (in dB) 0 to 50 by 10 
filRs 0.00496 to 0.496 

by 0.098208 
Eb/N0 (in dB) 10 

Symbols used for Pj, calculation 1,000 

Table 4.2: System parameters for the product kernel algorithm (with mem- 
ory) in a QPSK system: examination of Pb relative to J/S, fj/Ra, and B. 

0.5     SO J/S in dB 

Figure 4.6: Probability of bit error (1 CW jammer) for the LO QPSK detector 
with memory simulation - B = 20 
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0.5     50 J/SindB 

fj/Rs 

Figure 4.7: Probability of bit error (1 CW jammer) for the LO QPSK detector 
with memory simulation - B = 30 

can be concluded that the LO detectors derived using the large J/S assump- 
tion that the received signal pdf is approximately equal to the noise pdf are 
not as robust as would be desired. The effect(s) of this assumption, as well 
as possible methods for improving performance, are discussed in the next 
chapter. 
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Chapter 5 

"Ideal" Detection Techniques 

The simulation analyses of the LO detector techniques discussed in Chap- 
ters 3 and 4 indicate that performance varies greatly depending on the jam- 
mer characteristics. In particular, for the case of a single CW jammer, all 
of the LO detector implementations exhibited the same trend in P^. P& in- 
creased when fj/R3 decreased, i.e., a degradation in Pj, was observed when 
the CW jammer occurred near the center of the main lobe of the information 
signal's frequency spectrum. 

However, the goal of the robust LO detector is to provide reliable de- 
tection in a wide range of possible interference scenarios. In an effort to 
determine the cause(s) behind the observed decrease in performance, two 
ideal detector algorithms were examined: the globally optimum (GO) and 
the ideal LO (ILO) detectors. These two detector schemes are ideal in the 
sense that uncorrupted noise samples are assumed to be available at the re- 
ceiver. Thus, by examining these two detector algorithms, the effects of the 
large J/S assumption that fninQ(-) « /r/r^O) can be further investigated. 

5.1    The Globally Optimum Detector 

The GO detector for a standard QPSK system is a direct implementation of 
the ML detector for the signal and additive noise scenario, i.e., 

Choose the transmitted signal pair, (sjm,SQm), which maximizes 
(5.1) 

fmnQ{pi - Sim,pQ -SQm), 
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where fninQ{Vi> VQ) 
1S tne joint pdf of the noise, nj + JIIQ, and pr + jpQ is 

the observed value of the received signal vector. The robust GO detector can 
be implemented using the multivariate kernel estimator discussed in Section 

,T _ nJnQ and 4.2. Define n as the concatenated random noise vector, ir 

define {rtf} = j mf. TJQ.I J to be the set of L vectors formed by concatenating 
L observed samples of the I and Q channel noise vectors, each with length 
JV". Then, ?fc = [viiO-)---VuWVQiO-)---VQiW]T. The total number of 
available noise samples is thus Q = 2LN Finally, defining the following 
vectors, pT =   pf PQ   and s^ =  sjm Sgm , and using the result in Eq. (4.6), 
the product kernel implementation of the robust GO detector is 

Choose sm which maximizes 

UP -»») = IÄ7 six [n£ K (*>M/)^W)] 

or, more explicitly, 

Choose the transmitted signal pair,(s/m,sgm), which maximizes 

fninQ{Pi ~ Sin,Pq - SQm)    =    Lhli_hlNhQl...hQN 

•Ef=1[nf=1^(£^f^iM) 

(5.2) 

■i£i*( 
PQU)-'QmU)-rlQi 

*9« 
*)]. 

(5.3) 
In Eq. (5.2) and Eq. (5.3), hj is the jth smoothing parameter in the sequence 
{hit,..., hiN, ÄQ1 ,..., h.QN} where hi- and h.Qi are the smoothing parameters 
for the jth dimension of the I and Q noise vectors, respectively; r)i(j) is the jth 

sample of the ith observed concatenated noise vector, rji} and correspondingly, 
Vli(j) a-ad VQiU) axe *ne 3th samples of the ith observed I and Q noise vectors, 
respectively; and finally, K(-) is any one of a number of kernel windows 
discussed in Section 4.2 and [14], with the choice of kernel determined by the 
requirements specific to the given application. 

It should be noted that, in general, the GO detector cannot be imple- 
mented in practice since it requires uncorrupted samples of the channel noise, 
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i.e., {viiU)iVQi(J)}y which axe typically unavailable at the receiver in a com- 
munications system. However, the analysis of this detector will provide useful 
information concerning: (1) the attainable performance bounds of the robust 
detectors, (2) the effects of pdf estimation on detector implementation, and 
(3) the implications, and inaccuracies, associated with the assumption that 
/n/iigO « /rzr<3(-) in a high J/S environment. 

5.2    The Ideal LO Detector 

Recall from Eq. (2.7) that the general form of the LO detector with memory 
for quadrature signaling is given by: 

Choose the possible signal pair, (sjm,SQm), which maximizes: 

l(Pl,PQ) = Eti yim(k)9ik(Pl,PQ) + sQm{k)gQk{pupQ)} (5-4) 

where 

9h(Pi,Pq) =     y     ,.    .  x (5-5) 

and 

f v      d^(k)f^i^Q(Pi'PQ) ,r „. 
9Q„(Pi,PQ) =     y     (o   n s (5.6) 

Jn^Q^Pi, PQ) 

are the ILO nonlinearities with memory. Using the result given in Eq. (4.9), 
and the definitions in the previous section, the product kernel implementa- 
tions of gih(pi,PQ) and gQk(pI,pQ) are given by 

(5-7) 
and 

EL 
9QH(PI,PQ) = 

L |*' (*WC W) njl, K(awgalfl)n*- , x K{*»Z?W)\ 

** EL {ic * (^f^) nr=l * (^^T
2
^) } 

(5.8) 
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where (') denotes differentiation. 
As with the GO detector, the ILO detector is not usually implementable 

since it requires uncorrupted samples of the channel noise. However, the ILO 
detector can be utilized to determine performance bounds, as well as limi- 
tations associated with LO detector implementations that use the received 
signal samples as approximations of the noise. 

5.3    Simulation Results 
This section presents the simulation results for the GO and ILO detectors 
discussed in Sections 5.1 and 5.2. The main objective behind examining 
these two detector structures is twofold: (1) to determine the theoretical 
performance limits for the robust LO detector, and (2) to determine the effect 
on Pb of the large J/S assumption that the noise pdf can be approximated by 
the received signal pdf. 

The Pf, results for the robust GO detector in a standard QPSK system 
subjected to a single CW jammer are shown in Fig. 5.1 to Fig. 5.3, with the 
system parameters given in Table 5.I.1 In these figures, Pb is shown relative 
to various values of J/S, fj/Rt, and B. As can be seen, for a given value 
of J/S, and almost any fj/Rs, Pb can be reduced to useful value through a 
judicious choice of B. In particular, for low J/S (—20dB < J/S < lOdB), a 
small value of B (B « 10) is required. For high J/S (20dB < J/S < 40dB) 
a larger value of B (20 < B < 30) is required. These results support the 
assertion that the value of B in the kernel method must be increased as 
the noise becomes "less Gaussian." While the plots for the GO detector 
show that fj/Rs has little effect on Pb (for appropriate B and J/S regions), 
the same was not observed for the LO detector (see Section 3.6). Instead, 
Pb for the LO detector increased as fj/R, decreased. Thus, the observed 
performance of the two detectors indicates that the GO detector is more 
robust than the standard LO detector. 

Next, the performance of the GO detector was examined for the case of a 
xThe results shown in the these figures were compiled from only a single simulation run. 

Thus, these graphs should be used for the purpose of determining performance trends, and 
not quantitative values of Pj. Also, in many cases the resulting calculated value of P» was 
equal to zero. However, since P» was computed using only 1,000 symbols, a value of zero 
actually corresponds to a P» on the order of 10-3 or less. 
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System Parameters for the QPSK System 
Parameter Name Parameter Value 

Transmitter 
and 
Receiver 
Parameters 

Symbol rate (Ra) in Hz 0.05 
Samples per symbol (N) 10 

Memory length 10 
Kernel resolution (B) 10 to 30 by 10 

No. of samples per kernel approx. (Q) 10,000 

Channel 
Parameters 

J/S (in dB) -20 to 50 by 10 
fi/Rs 0.00496 to 0.496 

by 0.098208 
Eb/N0 (in dB) 10 

Symbols used for Pb calculation 1,000 

Table 5.1: System parameters for the GO detector in a QPSK system sub- 
jected to a single CW jammer: examination of Pb relative to J/S, fj/Rs, and 
B. 

0.3 
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g 
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-10 
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0.5    so 
30 

J/S in dB 

Figure 5.1: Probability of bit error (1 CW jammer) for the GO QPSK de- 
tector with memory simulation - B = 10 

69 



J/SindB 

Figure 5.2: Probability of bit error (1 CW jammer) for the GO QPSK de- 
tector with memory simulation - B = 20 

J/SindB 

Figure 5.3: Probability of bit error (1 CW jammer) for the GO QPSK de- 
tector with memory simulation - B = 30 
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QPSK system subjected to two CW jammers. Specifically, the first jammer 
was fixed at J/S = 30dB and fj/Ra = 0.496, with the second jammer 
allowed to vary. The corresponding Ph plots, for the system parameters in 
Table 5.2, are provided in Fig. 5.4 to Fig. 5.6.2 These figures show that 
good Pb performance can be attained for a wide variety of J/S and fj/Ra 

second jammer configurations. Previous work [5], however, has shown that 
the standard robust LO detector does not perform well when subjected to 
two CW jammers, except when one has a low J/S, e.g., J/S < OdB. 

System Parameters for the QPSK System 
Parameter Name Parameter Value 

Transmitter 
and 
Receiver 
Parameters 

Symbol rate (Ra) in Hz 0.05 
Samples per symbol (N) 10 

Memory length 10 
Kernel resolution (B) 10 to 30 by 10 

No. of samples per kernel approx. (Q) 10,000 

Channel 
Parameters 

J/S (in dB) for 1*' jammer 30 
fj/Ra for 1" jammer 0.496 

J/S (in dB) for 2nd jammer -20 to 50 by 10 
fj/Ra for 2nd jammer 0.00406 to 0.406 

by 0.080388 
Eb/N0 (in dB) 10 

Symbols used for Pb calculation 1,000 

Table 5.2: System parameters for the GO detector in a QPSK system sub- 
jected to two CW jammers: examination of Pb relative to J/S, fj/Ra, and 
B. 

The results shown in the these figures were compiled from only a single simulation run. 
Thus, these graphs should be used for the purpose of determining performance trends, and 
not quantitative values of Pb. Also, in many cases the resulting calculated value of Pj, was 
equal to zero. However, since Pj was computed using only 1,000 symbols, a value of zero 
actually corresponds to a Pb on the order of 10~3 or less. 
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0    0.5 fj2/Rs (fj1/Rs=0.49S) 

J2/S in dB (J1/S=30 dB) 

Figure 5.4:   Probability of bit error (2 CW jammers) for the GO QPSK 
detector with memory simulation - B = 10 

0    0.5 fj2/Rs (fj1/Rs=0.496) 

J2/S in dB (J1/S=30 dB) 

Figure 5.5:   Probability of bit error (2 CW jammers) for the GO QPSK 
detector with memory simulation - B = 20 
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0    0.5 fj2/Rs (fj1/Rs=0.496) 
J2/S in dB (J1/S=30 dB) 

Figure 5.6:   Probability of bit error (2 CW jammers) for the GO QPSK 
detector with memory simulation - B = 30 

Finally, the performance of the GO detector in a QPSK system subjected 
to three CW jammers was examined. In this case, the first jammer was 
fixed at J/S = 30dB and ft/R. = 0.496, the second at J/S = 30dB and 
fj/Ra = 0.496, and the third was varied. The plots of Pf, relative to J/S 
and fj/Rs for the third jammer, as well as various values of B, are provided 
in Fig. 5.7 to Fig. 5.9.3 The corresponding system parameters are listed in 
Table 5.3. These results, as before, indicate that a low value of Pj, can be 
attained for a wide range of J/S and fj/Rs settings through judicious choice 
of B. 

The Pb performance of the ideal robust LO detector was also examined. 
Specifically, P& for the ILO detector in a QPSK system subjected to a single 
CW jammer is plotted in Fig. 5.10 through Fig. 5.12, with the system pa- 

3The results shown in the these figures were compiled from only a single simulation run. 
Thus, these graphs should be used for the purpose of determining performance trends, and 
not quantitative values of Pj. Also, in many cases the resulting calculated value of P\, was 
equal to zero. However, since Py, was computed using only 1,000 symbols, a value of zero 
actually corresponds to a Pt on the order of 10-3 or less. 
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S3 astern Parameters for the QPSK System 
Parameter Name Parameter Value 

Transmitter 
and 
Receiver 
Parameters 

Symbol rate (R„) in Hz 0.05 
Samples per symbol (N) 10 

Memory length 10 
Kernel resolution (B) 15 to 35 by 10 

No. of samples per kernel approx. (Q) 10,000 

Channel 
Parameters 

J/S (in dB) for lat jammer 30 
fj/R3 for 1** jammer 0.496 

J/S (in dB) for 2nd jammer 30 
fj/Rs for 2nd jammer 0.406 

J/S (in dB) for 3rd jammer -20 to 50 by 10 
fj/R3 for 3rd jammer 0.00456 to 0.456 

by 0.090288 
Eb/N0 (in dB) 10 

Symbols used for Pb calculation 1,000 

Table 5.3: System parameters for the GO detector in a QPSK system sub- 
jected to three CW jammers: examination of Pj, relative to J/S, fj/Rs, and 
B. 
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0    0.5 fj3/Rs 

J3/S 

Figure 5.7:   Probability of bit error (3 CW jammers) for the GO QPSK 
detector with memory simulation - B = 15 

0    0.5 t]3/Rs 

J3/S 

Figure 5.8:   Probability of bit error (3 CW jammers) for the GO QPSK 
detector with memory simulation - B = 25 
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0     0.5 fja/Rs 

J3/S 

Figure 5.9: Probability of bit error (3 CW jammers) for the GO QPSK 
detector with memory simulation - B = 35 

rameters given in Table 5.4.4 As can be seen, Pf, for the ideal LO detector is 
similar to that for the GO detector (see Fig. 5.1 to Fig. 5.3), and as before, an 
increase in J/S requires an increase in B in order to yield good performance. 
However, in some regions, particularly those characterized by low J/S, the 
performance of the ideal LO detector is poorer than that of the GO detector. 
This is most likely due to two reasons: (1) because of computational con- 
straints, only 1,000 samples were used in each ideal LO nonlinearity estimate, 
whereas 10,000 samples were used in each GO detector approximation, and 
(2) the large interfence requirement used in the derivation of the LO detec- 
tor is not met when J/S is small, resulting in a poor approximation to the 
optimum, or GO, detector in these regions. 

The results in this section illustrate a number of important points. First, 
the instances of large P& for the LO detector, observed in Sections 3.6 and 

4The results shown in the these figures were compiled from only a single simulation 
run. Thus, these graphs should be used for the purpose of determining performance 
trends, and not quantitative values of Pj. Also, in many cases the resulting Pj was equal 
to zero. However, since Pj was computed using only 1,000 symbols, a value of zero actually 
corresponds to a Pj on the order of 10-3 or less. 
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System Parameters for the QPSK System 
Parameter Name Parameter Value 

Transmitter 
and 
Receiver 
Parameters 

Symbol rate (Ä,) in Hz 0.05 
Samples per symbol (JV) 10 

Memory length 10 
Kernel resolution (B) 10 to 30 by 10 

No. of samples per kernel approx. (Q) 1,000 

Channel 
Parameters 

J/S (in dB) -20 to 50 by 10 

filR. 0.00496 to 0.496 
by 0.098208 

Eb/N0 (in dB) 10 
Symbols used for Pb calculation 1,000 

Table 5.4: System parameters for the ILO detector in a QPSK system sub- 
jected to a single CW jammer: examination of P& relative to J/S, fj/Ra, and 
B. 

fj/Rs 

Figure 5.10: Probability of bit error (1 CW jammer) for the ideal LO QPSK 
detector with memory simulation - B = 10 
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J/SindB 

Figure 5.11: Probability of bit error (1 CW jammer) for the ideal LO QPSK 
detector with, memory simulation - B = 20 
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Figure 5.12: Probability of bit error (1 CW jammer) for the ideal LO QPSK 
detector with memory simulation - B = 30 
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4.3, most likely can not be attributed to error in the nonlinearity approx- 
imations since these same estimation techniques were used in the GO and 
ILO detectors. Second, for the robust LO detector in a system subjected 
to CW jammers, the increase in Pb corresponding to a decrease in fj/R3 is 
not inherent in the defining expression, Eq. (2.7), for the LO detector, as 
this trend was not observed in the Pb results for the ILO detector. Finally, 
the large J/S assumption that the noise pdf can be approximated by the re- 
ceived signal pdf is the most likely cause of the LO detector's regions of poor 
performance, because this is the only significant difference between the LO 
detector and the GO/ILO detector algorithms. Thus, it can be hypothesized 
that improvements in the performance of the robust LO detector can be at- 
tained by constructing, at the receiver, good estimates of the noise samples, 
or an accurate estimate of the noise pdf. 
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Chapter 6 

Summary 

The focus of this report has been robust locally optimum (LO) detection in a 
communications system subjected to interference exhibiting a large jammer- 
to-signal ratio (J/S). The term robust, in this context, indicates that prior 
information regarding the channel statistics is not required. Instead, the LO 
nonlinearity is implemented using an estimate of the channel noise probability 
density function (pdf). Thus, the robust LO detector can be used in applica- 
tions where the channel interference is unknown and possibly nonstationary. 

A derivation of the various LO detector structures was provided in Chap- 
ter 2. In particular, LO detection in a quadrature signaling environment 
was examined, with emphasis on a quadrature phase shift keyed (QPSK) di- 
rect sequence (DS) spread spectrum (SS) system. There are three forms of 
LO detection: (1) detection with memory, (2) detection in independent and 
identically distributed (iid) noise, and (3) memoryless detection. In LO de- 
tection with memory, no assumptions concerning the noise pdf are made, 
and thus the entire multivariate pdf is used in constructing the LO non- 
linearity. LO detection in iid noise utilizes the assumption that successive 
noise samples are iid, but with simultaneous in-phase (I) and quadrature (Q) 
samples remaining correlated. This detector structure, therefore, utilizes the 
two-dimensional joint pdf of the I and Q channel noise to construct the LO 
nonlinearity. Finally, in memoryless detection the noise is assumed to be iid, 
and the noise pdf is assumed to possess radial symmetry. In this case, only 
the univariate pdf of the noise magnitude is required to implement the LO 
nonlinearity. 

With the derivations of the various LO detector structures completed, 

80 



Chapter 3 focused on the implementation of the memoryless LO detector. 
Five techniques, which utilize estimates of the noise pdf and its derivative, 
were presented. These methods are: (1) the histogram algorithm, (2) the 
M-interval polynomial approximation (MIPA), (3) the continuous polynomial 
approximation (CPA), (4) the Fourier series approximation (FSA), and (5) 
the kernel algorithm. In all of these methods, observed samples of the channel 
noise are used to estimate the noise pdf and its derivative, from which an 
estimate of the memoryless LO nonlinearity is constructed. However, in 
most applications uncorrupted noise samples are unavailable, e.g, the noise 
is corrupted by the information signal. A common solution is to employ the 
large J/S assumption that the noise pdf is approximately equal to the received 
signal pdf. The results in Section 3.6 illustrate that this assumption is not 
always valid, even in high J/S environments. 

The robust LO detector with memory was the subject of Chapter 4. Two 
methods of implementing the detector were presented: (1) the histogram, 
and (2) the kernel algorithms. The histogram algorithm was shown to be 
unsuitable for the task of implementing the LO nonlinearity with memory 
since it requires an extremely large number of observations to construct a 
useful pdf estimate. The kernel algorithm, on the other hand, was shown 
to be well-suited to this task. As before, since uncorrupted noise samples 
are usually unavailable, the large J/S assumption that the noise pdf can be 
approximated by the received signal pdf was utilized. The simulation results 
in Section 4.3 indicated that, as for the memoryless case, this assumption is 
not always valid. 

The simulation results for the robust LO detectors with and without mem- 
ory implied that these detectors are not as robust as would be desired. To 
determine the cause of the observed regions of poor performance, two "ideal" 
detector structures were examined in Chapter 5: (1) the globally optimum 
(GO), and (2) the ideal LO (ILO) detectors. In both of these detector al- 
gorithms, uncorrupted noise samples, although unavailable in practice, were 
provided and used to estimate the required noise pdfs. The simulation re- 
sults showed that both of these techniques provided "robust" performance 
over a wide range of jamming scenarios. Thus, it can be inferred that the 
poor performance regions of the various LO detector algorithms were caused 
by the use of the large J/S assumption that the noise pdf is approximately 
equal to the received signal pdf. 

In conclusion, robust LO detection techniques can be extremely useful in 
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applications characterized by unknown, nonstationary interference, provided 
that an accurate estimate of the noise pdf can be made. Thus, techniques 
for either obtaining uncorrupted estimates of the noise samples, or for con- 
structing an accurate estimate of the noise pdf from a preliminary estimate 
of the received signal pdf, will be required in order to take full advantage of 
the "robustness" available in the robust LO detector. 
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